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Abshct. A full investigation of the energy spechum of a lwisted flexible string under elastic 
relaxation is presented and discussed in dehiI for the hrst time. New polynomial expressions 
for critical energy stafes are derived and the whole specmm of critical states (minima. maxima 
and inflexion pine) of the elastic energy is found and discussed in relation to superhelicity 
and elastic characteristics of the suing. The study is canid out in the context of the theory 
of linear elasticily and the thin rod approximation. The relaxation mechanism is sNdied by 
using conservation of linking diffmenee (by the formula ALk = Wr + ATw).  We show how 
specific geometric quantities, such as pitch angle, writhe and twist mntributions, as well as 
physical quantities, such as torsional and bending energy, depend on suphelicity (given by the 
specisc linking difference) and elastic characteristics of the string (given by bending and torsional 
rigidity). These quantities, expressed p" unit length, are examined and compared at each critical 
energy state. Starting from a supmisted configuration, we show thaI the suing relaxes (by 
twist reduction) through two different intermediate helical states (which correspond m different 
local minima), to reach the lowest minimum energy sfate in a supercoiled configuration. The 
case of a generic kink formation (and consequent passage thmugh an inflexional configuration) 
is then examined and new expressions for the energy change in the vicinity of the inklexion 
point are derived. 

1. Introduction 

In this paper we present a number of results concerning the elastic energy of an initially 
twisted flexible string when it is relaxed to a minimum energy state. Geometric and energetic 
estimates associated with intermediate maximum and minimum energy configurations 
realized during the relaxation process are presented for the first time with a discussion 
of the corresponding configurational change from an initial supertwist state to a supercoil 
end state, and new expressions for the energy change associated with an isolated generic 
kink formation are derived. These results have a wide range of applications in many 
physical contexts, where we make use of elastic string models. Examples include the 
mechanics of thin elastic rods, the kink instability of fibres and cables, the DNA supercoiling 
and the processes of protein folding in biochemistry (see, for example, Dean et QI 1985, 
Wadati and Tsuru 1986, Schlick and Olson 1992, mapper and Tabor 1994, Shi and Hearst 
1994). Moreover, information about geometric and topological aspects of twisted strings 
(presence of writhe and twist in the filament, distribution of superhelicity), and physical 
aspects (influence of elastic characteristics of the string on linking and kink formation, 
distribution of bending energy and torsional energy, etc) are extremely important in the 
general study of the structural mechanics of fibres, yarns and fabrics (Hearle et QI 1969). 
In this paper some of these aspects are investigated and clarified by studying the relaxation 
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mechanism of a twisted elastic string in isolation. In doing this, we improve and extend 
the study done by Hunt and Hearst (1991) on DNA supercoiling, presenting the whole 
spechum of critical energy states (minima, maxima and inflexion states) for different elastic 
characteristics and examining in detail the energy change associated with a generic kink 
formation in the string. The results of the present work can then be applied to the study 
of more complex physical situations, where, for example, highly entangled structures are 
present (as in polymer physics; see, for example, Kantor and Hassold 1988) and estimates 
of the configurational energy of the system are much harder. Let us first consider an elastic 
string model. 

The string is given by a slender tube (a filament) of length L and uniform circular 
cross section of area A = naz such that a / L  << 1. Let the filament axis C be a smooth, 
simple, closed curve X = X(s) (s is the arc length), with curvature c = c(s)  and torsion 
T = ~ ( s ) ,  and let ( t .  n, b) be the unit tangent, normal and binormal vector to X. A 
twisted string is simply modelled by assuming that the filament is made of a bundle of 
infinitesimal fibres uniformly twisted about the filament axis, each fibre C' being described 
by X*(s)  = X(s)  + E N @ ) ,  where E E LO, a]  is the distance of the fibre from the filament 
axis along the direction of a unit normal vector N(s )  = ncos O(s)+ bsinO(s) orthogonal 
to X. The total twist number T w ,  which is a measure of the winding of each fibre about 
X as we move along the axis, is given by 

T w  = $ Q(s) ds = - 1 $ ( N  x ds) d N  . t ds 
2n 2n 

where Q(s) denotes the angular twist rate (Love 1944). By direct evaluation of the last 
integral, we can express the total twist as the sum of the normalized total torsion and the 
intrinsic twist N = [@]~/2n,  i.e. 

The total twist is a geometric property of the string and varies continuously during evolution. 
A second geometric quantity, which measures the folding of the string axis, is the 

writhing number W r  defined by 

This quantity admits a physical interpretation in terms of the algebraic sum of positive and 
negative crossings of the plane projection of C, averaged over all projections (Fuller 1971, 
Moffatt and Ricca 1992). 

For topologically complex structures, topological quantities such as linkage and knot 
type, are invariant of the evolution and act as physical constraints. In this paper, we rely on 
the known invariance of the (CUug5reanu) linking number Lk, defined as the limiting form 
of the (Gauss) linking number of C' with C, a quantity that is associated with the degree 
of knottedness of the string. This topological invariant relates the writhing number of the 
string with the total twist number by the simple formula Lk = W r + T w  (C%Iug%reaeanu 1961, 
White 1969, see also Moffatt and Ricca 1992 for further references). In particular, changes 
in linking number ALk (assumed here always positive) from the equilibrium linking number 
L h ,  will result in changes in writhe W r  and total twist A T w ,  according to the equation 
(Fuller 1971) 

(3 ) ALk = W r +  A T w .  
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A string with a surplus (or a deficit) of linking number (a state which is referred to as 
superhelicity) has a net amount of writhe and twist distributed between its bending and 
torsional deformation. When superhelicity is solely due to net internal twist of fibres (i.e. 
[@IC # 0 with no curvature and torsion effects) we have a 'supertwist' configuration (see 
the inset in figure I@)). On the other hand, when net twist effects are negligible compared 
to net writhe (ALk W r ) ,  we have a 'supercoil' configuration (see the inset in figure I@)). 

2. Elastic energy and configurational states in the relaxation mechanism 

The string is assumed to be uniform, homogeneous, and linearly elastic. The elastic 
characteristics of the string are given by the (Young) modulus of elasticity Y and the modulus 
of rigidity G ,  and these can be related to a third quantity, the modulus of compressibility K, 

by the relation (Love 1944) Y = ~ K G / ( ~ K  + G ) .  Fundamental physical facts pose limits on 
the values taken by the elastic characteristics (Landau and Lifshitz 1959); in the limiting case 
of an incompressible medium, as K + CO, Y + 3G, and in general we have 2 < Y / G  < 3. 
Under the assumption of a uniform, thin filament, the bending rigidity Kb and the torsional 
rigidity Kt of the string are then given by (Love 1944): 

Kb = 4Ra4Y KI  = 4 n a 4 G .  (4) 
For our purpose it is convenient to'refer to the rigidity ratio x = Kb/K,  = Y/2G,  and 
parametrize the physical characteristics of the elastic string by x E [ l ,  1.51. 

Let us now consider the elastic energy E of the string. For a linearly elastic inextensible 
string this is just the sum of two terms, the bending energy Eb and the torsional energy Et, 
given by (Landau and Lifshitz 1959) 

E b  = i $Kb[C(S)lz dS Et = i 4 Kt[Q (s) - i-201~ ds (5)  

where s2, is the (natural) angular twist rate of the generating fibres. 
Before going further a word of warning about the validity of the linear elastic 

approximation for the range of configurations examined below is perhaps necessary. It is 
known that the stress-strain relation may well lead to the quadratic form of the deformation 
energy per unit length &(c, Q) = 4(Kbc2 + K @ )  only for small deformations (see, for 
example, the discussion in Dill 1992). More generally, it is known that a Taylor expansion 
of the strain energy function & can be expressed in powers of the components of the angular 
rotation rate vector of the deformation. Now, from inspection of the energy functional and 
the assumption of elastic isotropy for directions perpendicular to the string axis (so that & 
depends only on c and a), we have that the quadratic part of the expansion indeed retains 
the conventional form given by the integrands in (5 )  (Landau and Lifshitz 1959, Fuller 
1971). Note that in many cases even this second-order approximation is not sufficient for an 
accurate theory, and further assumptions on hyper-elasticity for the constitutive relations are 
necessary to take account of nonlinear effects (Stoker 1968, Ogden 1984). Here, however, 
the motivation for the present study is to find a first-order magnitude information on the 
energy spechum and relative energy redistribution for different string configurations. Hence, 
the use of the (first-order quadratic form) energy functional given by (5) is fully justified. 

By taking into account the invariance of the linking number, Fuller (1971) showed that 
at critical energy states (when, for example, the elastic energy takes maximum or minimum 
values) the bending and torsional energies per unit length become 

,!?b = $Kb[C(8)lz LZ (6) 
- k Z K I  
Et = - (ATw)' = 2 z 2 K t ( A i k  - Gr)' 
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Flgure 1. (a) A flexible elastic string OD relax lo a minimum energy slate, (6) sMing fmm a 
supertwist configuration (obtained by injection of pure internal twist), (e), (d) passing through 
a specmm of intermediate helical states and (e) attaining the lowest energy stae in a supercoil 
configuration. 

where A t k  denotes the specific linking difference and over-tildes denote quantities per unit 
length (with respect to L). 

We now wish to consider the relaxation of the twisted flexible string under elastic 
tension. The basic mechanism (well known at a phenomenological level) is sketched in 
figure 1, where, for the sake of example, the relaxation of an extensible twisted string is 
shown. Figure l(u) shows the original string when it is pulled tight: here L denotes the 
distance between the two marked ends (for a closed string imagine that the two ends are 
joined together at infinity). Let us first consider the supertwist case: by keeping L fixed, we 
inject superhelicity simply by increasing pure internal twist (ALk = ATw > 1 well above 
Zajac’s (1962) critical twist value; see figures l(u) and (b)); as internal twist increases, both 
elastic tension and total energy will increase to a certain value. Now let us relax the string 
by allowing the two marked ends to approach each other: a change in the string geometry 
then becomes visible, with the development of helical states (figure I(c)) and consequent 
kink formation (figure l(d)). Here, a decrease in length will correspond to a reduction in 
tension (tension is proportional to extension) with a reduction of specific net twist and a 
decrease in elastic energy. As the relaxation mechanism proceeds further, the string evolves 
to form a supercoil, with a continuous redishibution of internal twist into writhe and a 
continuous production of new coils (figure l(e)). 

For the moment we do not consider the mechanism of the transition f” one state to the 
other (the energetics of kink formation is discussed in section 4). but we merely compare the 
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elastic energy associated with each critical state. This is done by considering all quantities 
per unit length and conservation of arc length. (If we were to take into account stretching, 
we would have a decrease in torsional energy as well as in potential energy associated with 
the stretching, both contributing to the relaxation mechanism; Love (1944), Stoker (1968).) 
In order to estimate the energy associated with each critical state at different ALk, we 
need to estimate curvature and writhing number corresponding to the different geometric 
configurations. Let us examine the following three particular cases. 

Supertwist configuration 

In this case there are no curvature and torsion effects present. Hence, by (3), A f w  = A i & ,  
with no contribution to bending energy. Therefore, the specific total energy is given simply 
bY 

I?('') = 2 ~ t ~ K ~ ( A i & ) ~ .  (7) 

Helical configuration 

A helical string (axis) has curvature and torsion constant, with 

cos2 CY c =  ~ 

r 

where 01 and r denote, respectively. the helix pitch angle and the radius of the circular 
cylinder on which the helical axis is inscribed. The specific writhing number is evaluated 
by using a theorem originally put forwad by Fuller (1978) (see the appendix, case (a)), 
which gives 

- (1 -s ina)cosa 
Wr = 

2zr 

Thus, by (6), we have 

(1 - sin 01) cos M 
2ar  

- Kb cos4 01 
E*) = 

2rZ 

(9) 

On the other hand, the pitch p of the helix is given by p = 2 ~ r  tana, and, alternatively, 
this can be written as (see figure 2) p = 2(a + h)/ cos 01, where h = O(a), with 0 < h << L 
(since ideally the helix has an infinite number of turns). By equating the two expressions 
above, we have 

a = sin-' (7) a + h  

and by substituting the equation above into (10) and taking p = r/(a + h) ,  we have 

I - - + - )  2 1 
X p X4p4  

for the bending energy, and 
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Figure 2. A family of helical lubes of given pitch ( p  = constant) is obtained by v q b p  the 
pitch angle Q and cylindrical radius T according lo lhe relation p = Zlrr me, 

for the torsional energy. Critical states of the elastic energy are given by setting akm)/ar = 
(U + h) - ’aE@) /ap  to zero. Thus, by combining (12) and (13) and differentiating, we have 

where 

and H = %(U + h ) A k  Equation (14) is a polynomial of 14th order in  p and will 
be solved numerically for given H = H ( A L k )  and x (see below for a discussion of the 
numerical results). The writhe and the net total twist are also expressed as function of p. 
By equation (9). we have 

and by (3) ATw = ALk - Wr. The fraction of elastic energy that goes in bending energy 
(relative bending energy) is given by 

with the rest going in torsional energy. For the sake of comparison, it is convenient to 
normalize the energy with respect to a reference energy. Taking 

we have the normalized elastic energy given by 
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Supercoil configuration 

In this case two helical strands are closely interwound with high pitch angle 
so that a good approximation is to take r = a and 

(0 z n/4), 

Application of Fuller’s theorem to the supercoil case (see the appendix again, case b) 
gives 

- sinpcosp Wr = 
2na ’ 

Note that this writhing number measures the folding of the two interwound helical 
strands and differs (evidently) from that of a helix of high pitch (cf equation (9) with 
(Y > n/4). The energy per unit length of the double strand supercoil is thus given by 

Critical states of the elastic energy are found by setting al?nc)/&5 = 0. After some 
straightforward algebra, we have 

whose solutions will be analysed and discussed below for given H = H ( A L k )  and x. For 
each critical state, the Writhing number is given by 

L tan B W r  = 
2 ~ ( a  + h )  1 + tanZB 

and, similarly as we did for the helical state, we calculate relative energies and normalized 
energies. For example, the relative bending energy is given by 

%E?’ = X 
~ + ~ ~ ( 1 - & ) ~ ( 1 + t a n 2 p ) 2  

and the normalized total energy by 

which will be estimated and compared with the results for the helical case. 
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3. Spectrum of critical energy states analytical and numerical resdts 

A full investigation of the whole spectrum of critical energy states of helical and supercoil 
configurations is carried out for different values of specific Linking difference and elastic 
characteristics, taking ALk E (0,301, x E [l,  1.51 and ~ R ( Q  + h ) / L  = 0.1. 

The critical energy states of the helical configurations are found by solving the 
polynomial in (14). A detailed numerical investigation shows that this polynomial bas 
12 real roots (and two complex conjugate roots) throughout the whole range of values 
considered. By examining the behaviour of the second derivative at each critical state, we 
find that the polynomial has four minima, four maxima and four inflexional states, with two 
minima and two maxima of physical relevance. The pitch angle and the writhing number 
corresponding to the minima are plotted versus ALk in figure 3, for x = 1 and x = 1.5 
(the curves of physical interest, h&,,jn and h2,,,iD, are plotted as full curves). Note how the 
Ly-curve h2,,,in (figure 3(u)), which is slightly decreasing in both diagrams (passing from 
% 89" to % 86.5" at x = l.O), gives a writhing number that is negligible at x = 1.0 and 
rather relevant in the incompressible case ( x  = 1.5) (figure 3(b)); the relative behaviour of 
the writhing number for hl,,,in and h&. as ALk increases is also noteworthy, as this will 
have important implications on the redistribution of twist (see the discussion below). 

For the sake of comparison, before examining some energy aspects associated with the 
helical configuration (and indeed also with the supertwist and the supercoil configuration), 
we wish to consider, for the moment, the case of the supercoil. In this case, the 
critical energy states are given by solving the polynomial in (22). By substituting 
p = tan-'[(1/4~) + y]. the polynomial takes the normal form 

+ I  = o  1 3 2x--1 
y -  - ) [(4H)4 +- 

Pigurr 3. (a) Pitch angle and (6) writhing number venm ALk, cmresponding to several minima 
energy state for he l id  con6gumioo. Top diagrams refer to the c ~ s e  x = 1 .O. Bot" diagrams 
refw lo the case x = 1.5, in the inmmpressible l i d .  Curves of physical interest are the full 
CWS. 
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with cubic resolvent in z 

+ 4) z + A (A + 2x - 1 
3 3  3 2x-1 z - - z z +  -+- 4H2 ( (2H)4 H2 

The behaviour of the solutions depends on the sign of the discriminant D = (P/3)3+(Q/2)2, 
where 

2x - 1 1 2x-1 1 1 2 % - 1  
p = -  + 4  Q=- +-+- +-+- 64H6 4@ 8H3 HZ H ’ H2 

Since P > 0 always, then D 0 and the cubic resolvent always has one real solution. This 
means that the quartic (26) (as well as the original polynomial) always has two real solutions 
(and two complex conjugate solutions). The real solutions can be calculated analytically by 
standard techniques (see Bronshtein and Semendyayev 1985). An inspection of the second 
derivative of the energy shows that the two critical states correspond to a maximum and a 
minimum. 

Geometric and energetic properties of the supercoil minimum energy state are shown 
in figure 4, where pitch angle, writhe, twist, and relative bending and torsional energies are 
plotted against ALk and x. For very large linking difference the pitch angle results are 
bounded from above (cf equation (22), taking the limit as H --f a), so that a/4 < fl  < n/2. 

Figure 4. (a) pitch angle, (b) writhe and twist, and 
(c) relative bending and torsional energy VMUS ALk 
and x ,  at the minimum energy state of the supercoil 
mnfiguration. 



2344 R L Rima 

This implies that W r  4 L/[4n(a  + h ) ]  = constant as ALk + CO (cf equation (23)). 
so that ATw o( ALk for very large ALk. Therefore, for very large linking difference 
the elastic energy is transformed almost entirely in torsional energy (cf equations (24) 
and (25)). with the normalized bending energy that takes the (upper bound) limiting value 
I& + xL2/[4n(n +h)I2 as ALk + CO. As we shall see below, this limit on the bending 
energy has interesting implications in the spectrum of minimum ener y states Note the 
two particular cases for which W r  = ATw (figure 4(6)) and %E$ = %;?) = 0.5 
(figure 4(c)). In the fust case, using (23), we have 

W r  = A T w  =+ tan4,4 - 2% tan2,4- 2x + 1 = 0 (28) 

so that (by choosing positive values for the pitch angle) we have an equal share of writhe 
and net twist when 

Similarly, by (24) and after some algebraic manipulation, we have 

%E?) = = 0.5 =+ tan2,3 - 2X1Ptan,4 - 1 = 0 (30) 

which gives (again, by choosing positive pitch angles) 

We can now make a full comparison of minima and maxima (chain curves) of the 
normalized total energy. The whole spectrum of critical energy states for the three geometric 
configurations is shown in figure 5 .  For ALk E (0,301 and for both x = 1.0 and x = 1.5, 
the lowest energy state is attained by the supercoil configuration (curve scl,,,in). As energy 
increases in the range 16 c ALk c 30, above the supercoil minimum energy state we have 
the minima for the helical configuration (curves h l -  and h 2 ~ , ) ,  and above that energy 
level we have the supertwist curve (st curve). This means that for large Linking difference, 
the relaxation mechanism must pass through two (different) intermediate helical minimum 
energy states (with geometry and writhing number given by diagrams in figure 3) before 
attaining the supercoil lowest energy state. Notice here that a lower intermediate helical 
state corresponds (cf figure 3) to a helical tube of lower pitch angle. In the incompressible 
case (x = 1.5) in particular, this means that the transition from a supertwist state passes 
first through an intermediate helical minimum (of approximately 35" pitch angle) and then 
through a second intermediate helical minimum (of approximately 5' pitch angle-almost 
a kink) before attaining the supercoil lowest energy state. (This mechanism, sketched 
intuitively in figure 1, can be observed by direct experience with a twisted elastic (rubber) 
string.) 

A different situation is visible in the range 1 c ALk c 15. At x = 1.0 the minimum 
helical state is attained only by the curve h2,., which in the top diagram of figure 5 appears 
to be indistinguishable from the st curve. However, a close-up view (figure 6(b), x = 1.0) 
shows that the helical minimum energy state is placed decidedly between the supercoil 
lowest minimum energy state and the st curve (as it should be). In the incompressible case 
(x  = 1.5). on the other hand, the transition passes through a different helical minimum state, 
given by the curve hl,,,in (see also the bottom diagram of figure 6(6)), at much lower pitch 
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(6 )  

Figure 5. Specmm of minima (full and broken curves) and maxima (chain curves) of the 
normalired elastic energy for different configurational stakes and elastic characteristics. 

angle but now certainly with non-negligible writhing number (cf figure 3 again). Therefore, 
for relatively low ALk (but well above the writhing instability) the twisted string relaxes 
through only one of the two intermediate helical states, determined by the specific physical 
(elastic) properties. 

The normalized bending energy relative to different minimum energy stat- is shown 
in figure 6(a). As was pointed out earlier on, remember that the writhing number of the 
supercoil configuration is bounded from above by W r  -+ L/[4ir(a + h) ]  = constant as 
ALk + 00, which poses an upper bound to the corresponding bending energy. As a 
consequence, a helical state, while having more curvature for small writhing numbers, can 
attain larger writhing numbers (for a given aspect ratio) than the supercoil configuration. 
This means that. comparatively, more bending energy can be absorbed in the helical state 
than in the supercoil state, and therefore the helical state can reach lower energy levels for 
very large linking numbers. This behaviour is particularly evident when we compare the 
lower-energy helical state @Idn) with the supercoil minimum energy state (see figure 7) in 



(4 (b)  

Figure 6. (0)  Normalized bending energy and (b)  elastic energy versus ALk, for 
canfigurational states at minimum energy. 

different 

(x=151 
Figure 7. Comparison of writhing number (top left), relative bending energy (top right), 
normalized bending energy (bottom left) and total elastic energy (bottom right) for the 
lower helical energy state (hl,in) and the supercoil minimum energy state (sclmim) in the 
incompressible limit ( x  = 15). Nole (in the bottom right diagram) the transition of the helical 
energy state (kid to the lowest mhimum energy state for ALk > 50. 
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the incompressible case ( x  = 1.5) and for large specific linking differences. A comparison 
of writhing numbers (top left diagram of figure 7) shows that indeed the helical case can 
attain larger writhing numbers at increasing ALk, and this results in higher values of (relative 
and normalized) bending energy absorbed in the helical configuration (diagrams at the top 
right- and bottom left-hand comers of figure 7). allowing further reduction in twist and 
consequential decrease in total energy. In the incompressible case, a close inspection of 
the curves h l ~ n  and scl- (bottom right-hand diagram of figure 7) shows that indeed for 
ALk t 50 the lowest energy state is achieved by the helical configuration, confirming the 
predictions of Fuller (1971) and Hunt and Hearst (1991). 

4. Energy change associated with a kink formation 

The case of a formation of an isolated kink in the string (for example by twist reduction, 
to attain a lower energy state) is particularly interesting, since it is invariably associated 
with the initial development of a supercoil state. From a purely topological viewpoint, the 
development of a kink by continuous deformation of the string is equivalent to performing 
a Reidemeister type I move on the string (Kauffman 1991) (see figure 8). As pointed out 
by Ricca and Moffatt (1992), any deformation whose projection on any plane involves 
a Reidemeister type I move must involve passage through an inflexional configuration 
(i.e. through a state that does contain a point of inflexion, with c = 0). The emergence 
of a kink (by ‘ambient isotopy’) does therefore typically involve such a passage and 
consideration of corresponding changes in bending and torsional energy is of particular 
interest. 

Let us consider the case ATw = +I, W r  = 0 (see figure 8(a)). As the kink develops, 
the string axis passes through an inflexional state (say at s = 0 and t = 0, t parametrizing 
the deformation), with decrease in ATw and equal and opposite increase in W r  (for the 
conservation of the linking number, cf equation (3)). Thus 0 < W r  < 1 (figure 8(b)). Let 
us assume that arc length is locally preserved during the deformation and suppose that in the 
neighbourhood where s E [-SO, SO] (for SO = O(a)) there is only one point of inflexion. Dur- 
ing this process, the generic behaviour of the string axis in the vicinity of the inflexion point 
is given by the parametrized twisted cubic (Ricca and Moffatt 1992, Moffatt and Ricca 1992) 

(32) X(S, t )  = (s - ;t*s3,-ts*, s’) 

ATw = +1 Wr=O 

--- - .-. - (4 

Figure S. The development of a kink in the string is sssociated with a topological trmsformation 
known as Reidemeister type I move: in this case, a continuous change of (0) twist to (c)  writhe 
is attained by a squence of (b) intermediate helical states, with the appearmm of an inflexional 
configuration (i.e. a sme that does contain a point of innexion). 
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with curvature and torsion given by 

-3t r(s,  I )  - - 
t 2  + 9sz 

c ( s ,  t )  - 2 ( t 2  + 9 s 2 y  (33) 

for Is[ and It1 (t E [--to. to], so >> It[) small. Note the singular behaviour of t(s, t )  at the 
inflexion point as t passes through zero. 

In the vicinity of the inflexion point the quadratic form of the energy functional gives a 
first-order approximation to estimate the energy change. Hence, the bending and torsional 
energy per unit length associated with uniform share of torsional seess can be estimated (to 
leading order in [SI and Itl) as 

(34) &(S, I )  = iKb[C(S, t)]’ - 2Kb (f’ + 9S2) 

and (see the appendix, case (c)) 

- 2n2Kt 
E,(#, t )  = - (ALk - Wr)’ - - 

LZ (35) 

where T =- to. The change in energy in the neighbourhood of the inflexion point is thus 
given by 

and 

a f  4a2K,  awr 
at ~2 at 
_..._-- (37) 

where the dependence of writhe on deformation can be evaluated more accurately by using 
the formula (Mapper and Tabor 1994) 

with q b  = (aX/as)  * b and qn = ( a X / a s ) .  n. Hence, by (32) and the expressions above, 
we have a change in bending energy given by 

!-@? - 8Kbrso 
at 

and a change in torsional energy given by 

(39) 

Equations (39) and (40) express respectively the increase in bending energy and the 
(corresponding) decrease in torsional energy associated with the inflexional configuration as 
a kink develops. Note that as the string axis passes through the inflexional configuration the 
energy functional remains continuous, with a(GEb)/at = 0 and 3(6El)/at = - 1 6 z K l s ~ / L 2 ,  
at t = 0. 
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5. Conclusions 

In recent years, new applications of geometric and topological techniques have been used 
successfully in the solution of many physical problems involving twisting, kinking and 
entanglement of topologically complex structures (Sumners 1992). 

In this paper, a combined use of these techniques has been applied to study the elastic 
relaxation of a twisted flexible string and the corresponding energy spectrum. The study 
has been carried out in the context of the theory of linear elasticity and the thin rod 
approximation (which is known to give correct first-order magnitude information) and the 
relaxation mechanism is studied by using conservation of linking difference by the formula 
ALk = W r  + ATw.  New polynomial expressions for critical energy states have been 
derived and the whole spectrum of critical states (minima, maxima and inflexion points) of 
the elastic energy has been found. Specific geometric quantities, such as pitch angle, writhe 
and twist contributions, as well as physical quantities, such as torsional and bending energy, 
have been closely examined at each minimum energy state. Starting from a supertwisted 
configuration (which has maximum elastic energy), we have shown that the string relaxes 
(by twist reduction) through two different intermediate helical states (which correspond to 
different local minima), to reach the lowest energy state in a supercoiled configuration. 

In the case of very high superhelicity, we have shown that the writhing number of the 
supercoil configuration is bounded from above by W r  -+ L/[4n(a + h)] = constant as 
ALk -+ 00, which poses an upper bound to the corresponding bending energy. In the 
incompressible case we have proved Fuller’s original conjecture (1971), explaining why 
for very high linking difference the helical configuration, and not the supercoil, attains 
the lowest energy state. Finally, the case of a kink formation and the associated passage 
through a generic inflexional configuration has been discussed and new expressions for the 
corresponding change in bending and torsional energy valid in the vicinity of the inflexion 
point have been derived. The equations describe the increase in bending energy and decrease 
in torsional energy as the kink develops and an example of the corresponding change in 
writhing number is given in the appendix. 

The results presented in this paper are quite general and can be usefully applied to a 
variety of mathematical and physical problems, from the study of knotted elastic shings and 
defect lines (Langer and Singer 1984, Ricca 1993, 1994a) to the problem of protein folding 
@e Santis er al 1986, Bednar et a1 1994). Evaluation of the energy change associated 
with kink formation and the development of supercoil state is also important in the study of 
evolution of twisted magnetic flux tubes in ideal magnetohydrodynamics (Berger and Field 
1984, Moffatt and Ricca 1992, Ricca 1994b). We wish to extend this approach to study 
energetic aspects of structures geometrically and topologically more complex and we hope 
to cany out this programme in the near future. 
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Appendix 

The writhing number of a curve can be interpreted in terms of spherical area and calculated 
according to the following result (Fuller 1978, Aldinger et a1 1994): 
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Theorem. For any closed space curve X ( s )  of class C3 the tangents t trace out a space 
curve C(s) on the unit sphere which is piecewise of class C2 (C may lose differentiability at 
inflexion points of X). After giving the curve an orientation, divide it into a finite family 
of non-self-intersecting closed piecewise C2 space curves. Each cuve of this family then 
encloses a domain Qi defined in such a manner that the geodesic normal points into its 
interior; let A be the sum of the areas of these domains (some components of this area 
might be counted with multiplicity determined by how often the corresponding domains are 
encircled by the curve). Then we obtain the following characterization of the writhe: 

A 
1 + W r ( X )  = - 

2Z 
(mod 2). 

The writhing number for the helix and the supercoil can be evaluated as follows (see 
also Fuller 1971 and Tanaka and Takahashi 1985): 

(a) Writhing number of the helix 

Consider an infinite helix X ( X )  of m huns and pitch angle ru which is closed at infinity 
by a smooth curve (possibly a point) (see figure Al(a)). The helix X ( X )  is mapped to the 
curve C('H) on the unit sphere by the tangent indicatrix t ( X ) .  The spherical area enclosed 
by C(W is given by the hemisphere of area 2 r  plus m times a spherical cap of area 
Zrr(signumru - sina) (asymptotically). By applying the theorem above we have that the 
writhing number W r ( H )  is given by Wr('H) = &m(l -sinru) (mod 2). Since Wr('tY) + 0 
as a -+ n/Z, by a continuity argument we have Wr(X) = hm( l  - sinru). The length of a 
helical turn is 2nr/cosa, therefore (taking the positive value) the writhe of the helix per 

Figure Al.  Application of the sphecal area interpretation theorem to calculate the writhing 
number of (a) the helix and (b) the supenoil, map@ onto fix unit sphere via the tangent 
indicdx. 
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t < O  t = O  t > O  t > O  

( t =  rb- (t = -.to) (t = 0) (t = d o )  I 4 
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t > o  

(t = $ b  - a) 

W r = t l  

Figure AL Deformation of a closed curve developing a kink. As the positive kink develops, 
the WriUiing number increases, due to the increase of the spherical area encircled by the curve 
mapped via the tangent indicamix. 

(b) Writhing number of the supercoil 

Now consider an infinite supercoil X ( S )  of n turns and pitch angle p which is closed 
on itself smoothly (see figure Al(a)). The supercoil X ( S )  is mapped to the curve 
C(S) on the unit sphere by the tangent indica& t(S). The spherical area enclosed 
by C(S) is given by the hemisphere of area 2n plus n times a spherical cap (counted 
with multiplicity and orientation) of area Zir(signump - sinp) (asymptotically). Again 
applying the above theorem we have that the writhing number Wr(S)  is given by 
Wr(S) = @n(sinp) (mod 2). Since W r ( S )  -+ 2n as p -+ n/2, by a continuity argument 
we have W r ( S )  = zQn(1 - sinp). The length of a helical tum is 2nr/cosp, therefore 
(taking the positive value and r = a )  the withe of the supercoil per unit length (2n turns) 
is given by I@r(S) = sinpcosp/Zira. 

(c) Writhing number of a curve developing a kink 

Application of the spherical area interpretation theorem to the case of a curve developing 
a kink is illustrated in figure A2, in which the curve (representative of the string axis) 
is mapped to the unit sphere. Note how the sperical area (measure of the writhing 
number) changes as the kink develops. For example, if we take 0 < to < T = bra, then 
A ( t )  = 2.n + 2~ sin r(f)  (t  parametrizes the deformation), where r(t) = (t  + ak)/(bfo) 
and a << b, so that, by continuity, we have W r [ t ]  = sin r(t). Hence as f increases, we 
have W r [ t  = -at01 = 0 (t  < 0), 0 i Wr[t] << 1 (t  E [-b, to]) ,  W r [ f  = n / 6 b  - a ]  = 4 
( I  z 0) and Wr[ t  = z b / 2  - a ]  = 1 (t >> 0). as shown in the sequence in figure A2. 

References 

Aldinger J, K lapp  I and Tabor M 1994 Formulae for the calculation and estimation of writhe Preprint 
Bednar I, Furrer P, Sfasiak A, Dubochet I, Egelman E H  and Bates A D 1994 The twist. writhe and overall shape 

of supercoiled DNA change during counterion-induced transition from a lwsely to a tightly intenvound 
superhelix j ,  Mol. Bid. 235 825-47 



2352 R L Ricca 

Berger M A and field G B 1984 The topological propeais of magnetic helicity J,  FluidMeeh 147 133-48 
Bronshtein I N  and Semendyayev K A 1985 Handbook of Mnrhemtics ed Hirrch (New York: Van Nostrand) 
CiUugareanu 0 1961 Sur les classes d'isobpie des noeuds fridimcnrionnels et le- invariants Clcehorlovok Math 

Dean F. S t a s i t  A, Koller T and Cozzarelli N R 1985 Duplex DNA knots produced by Escherichia coli 

Dill E H 1992 KirchofPs theory of rods Alch Hisr. Ewct Sci. 44 1-23 
De Santis P. Pallachi A and Chiavarini S 1986 Topological approach to protein folding G m ,  Chim It. 116 561-7 
Fuller F B 1971 The writhing number of a space curve Pmc. Natl Acad. Sci. USA 68 815-9 - 1978 Decomposition of the linking of a closed ribbon: a problem from molecular biology Pme. Nod A d ,  

Hearle J W S. GrosbeG P and Backer S 1969 Structural mechanics offibres. Yams, and Fabrics (New York 

Hunt N G and Hearst J E 1991 Elastic model of DNA supercoiling in the infinilelength limit J.  Chem. Phys. 95 

Kantor Y and Hassold G N 1988 Topological entanglemnts in lhe permlation problem Phys, Rer. Lett, 64 1 4 5 7 4  
Kauffman L H 1991 Knots and Physics (Singapore: World Scientific) 
Klapper I and Tabor M 1994 A new hvisf in Ihe kinematics and elastic dynamics of thin filaments and ribbons 

Landau L D and Lifshitz E M 1959 Theory OfElarriciry (London: Pergamon) 
Langer I and Singer D A 1984 Knotted elastic cums in R3 J. London Math, Soc. 30 51220 
Love A E H 1944 A Treatise on the Mathematical Theory of Elmticiry (London: Dover) 
Moffau H K and Ricca R L 1992 Helicity and the Carug&eanu invarianl Piwc. R. Soc. Lmrdon A 439 41 1-29 
Ogden R W 1984 NonLinear Elastic Deformatbm (Chichester: Honvood) 
Rieca R L and Moffatt H K 1992 The helicity of a honed vortex filament Topological Aspects of the Oynomics 

of Fhidr ond P l m m  ed H K MoffaH et 01 (Dordrecht: Kluwer) pp 225-36 
Rim R L 1993 Torus knots and polynomial invariants for a class of soliton equations Chaos 3 83-91 (see also 

e m N m  1994 Chaos 4) - 1994a Non-linear dynamics of vortices and defect lines: geomeuic and topological aspects. Poster paper 
presented at the NATO AS1 Mee~hg on Formrww and Intermtiom of Topological Defects (Camb?idge) - 1994b Writhe and twist helicity contributions to an isolated magnetic flux tube and hammock configuration 
Poster Papers Presented at rhe VI1 European Meeting on Solar Physics ed G Belvedere er a1 (Catania 
Astrophysical Ohs.) pp 1 5 1 4  

Schlick T and Olson W 1992 Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA 
Science 251 I 110-5 

Shi Y and H a t  J E 1994 The Kirchoff elastic rod. the nonlinear Shredinger equation. and DNA supercoiling 
J. Chem Phys. to appear 

Sokolnikoff I S 1956 MaBemricol7'hmry of Elarticiry (New York: McGraw-Hill) 
Stoker J J 1968 Nonlinear Elarrin'ry (London: Gordon and Breach) 
De Sumnen W (ed) 1992 New Scientijc Appiicarions of Geometry and Topology PSAM 45 (Providence, RI: 

Tanaka F and Takahashi H 1985 Elastic theory of supercoiled DNA J. Chem Phys. 83 6017-26 
Wadati M and Tsuru H 1986 Elastic model of looped DNA Physicn 21D 213-26 
While J H 1969 Self-linking and the Gauss integral in higher dimensions Am J ,  Math. 91 693-728 
zljnc E E 1962 StaLility of two planar Imp elasticas J. Appl. Mcch. 29 136-42 

J. 11 588-625 

topoisomerase 1 J. Biol. Chemistry 260 4975-83 

Sci. USA 75 3557-61 

Wtley) 

9329-36 

3. Phys. A: Math Gen. 27 4919-24 

American Malhematical Society) 


